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We calculate the optimal upper and lower bounds, subject to the assumption of
streamwise invariance, on the long-time-averaged mechanical energy dissipation rate
ε within the flow of an incompressible viscous fluid of constant kinematic viscosity
ν and depth h driven by a constant surface stress τ = ρu2

� , where u� is the friction
velocity. We show that ε � εmax = τ 2/(ρ2ν), i.e. the dissipation is bounded above by
the dissipation associated with the laminar solution u = τ (z+h)/(ρν)ı̂ , where ı̂ is the
unit vector in the streamwise x-direction.

By using the variational ‘background method’ (due to Constantin, Doering and
Hopf) and numerical continuation, we also generate a rigorous lower bound on
the dissipation for arbitrary Grashof numbers G, where G = τh2/(ρν2). Under the
assumption of streamwise invariance as G → ∞, for flows where horizontal mean
momentum balance and total power balance are imposed as constraints, we show
numerically that the best possible lower bound for the dissipation is ε � εmin =
7.531u3

�/h, a bound that is independent of the flow viscosity. This scaling (though
not the best possible numerical coefficient) can also be obtained directly by applying
the same imposed constraints and restricting attention to a particular, analytically
tractable, class of mean flows.

1. Introduction
Forced turbulent flows occur in a wide range of natural and industrial fluid flows.

Identifying scaling laws for the mechanical energy dissipation rate within such flows
has been widely studied, in an effort to capture how the turbulent small-scale motions
dissipate the energy input by the forcing. Naturally, the properties of the mechanical
energy dissipation rate are strongly dependent on the characteristics of the forcing of
the flow. One particular type of forcing that commonly occurs is the application of
stress at the upper surface of a layer of fluid over a solid lower surface as happens,
for example, when wind blows over a body of water. It is reasonable to suppose
that this injection of energy at the upper surface will determine both the bulk and
small-scale properties of the flow in the forced fluid layer, with the no-slip lower
surface boundary condition also playing a critically important role. In this paper we
address the fundamental question of how the forcing affects the flow by determining
both upper and lower bounds on the mechanical energy dissipation rate for flows
that are statistically stationary, thus defining a range of possible behaviours of such
a flow.

We concentrate on generating bounds for the mechanical energy dissipation rate,
as such bounds can be derived rigorously without introducing heuristic modelling
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assumptions or approximations. In this paper, we use the variational method
developed by Constantin and Doering utilizing a mathematical device introduced
by Hopf (1941) (Doering & Constantin 1992, 1994; Constantin & Doering 1995;
Doering & Constantin 1996; Nicodemus, Grossmann & Holthaus 1997a, b, 1998a, b)
to construct a bound on the mechanical energy dissipation rate. Following Plasting
& Kerswell (2003, henceforth referred to as PK03), we refer to this method as the
CDH method. The CDH method uses a non-unique decomposition of the velocity
distribution into a steady ‘background’ that satisfies the inhomogeneous boundary
conditions, and ‘fluctuations’ away from this background satisfying homogeneous
boundary conditions. It is important to stress that the background does not necessarily
correspond to the horizontal average of the flow. Such decompositions can then be
used to construct rigorous bounds on flow quantities of interest, consistently with
imposed dynamic and kinematic constraints, using conventional techniques of the
calculus of variations. Kerswell (1997, 1998, 2001) demonstrated that this method
produces the complementary variational problem to the earlier approach pioneered
by Howard (1963, 1972, 1990) and Busse (1969a, b, 1970, 1978), developing ideas
originally proposed by Malkus (1954, 1956).

With the added, reasonable (though unproven) assumption that flows associated
with the bounds do not have any streamwise variation (Busse 1969a, 1970; Nicodemus
et al. 1998a) PK03 demonstrated that numerical continuation methods (using the
continuation program PITCON of Rheinbolt & Burkardt 1983a, b) can be used to
generate optimal solutions to the full Euler–Lagrange equations arising from the
simple dynamical constraints of total power balance, and horizontally averaged
streamwise momentum balance. They considered the canonical problem of generating
an upper bound on the mechanical energy dissipation rate in plane Couette flow,
identifying the best possible upper bound numerically. (Of course, Couette flow is
qualitatively different from stress-driven flow, as Couette flow fixes the boundary
velocity, not the boundary velocity gradient.) Since Couette flow geometry had
been previously widely considered, (e.g. Busse 1970; Nicodemus et al. 1998a) they
were able to identify the extent to which the full numerical solution improved the
bound compared to studies that considered somewhat more restrictive classes of trial
functions, and also to identify the important qualitative characteristics of the flows
associated with the bounding solutions.

Several studies of forced flows have considered both periodic domains (Childress,
Kerswell & Gilbert 2001; Doering & Foias 2002) and flows with stress-free boundary
conditions (Doering, Eckhardt & Schumacher 2003). However, there has been no
previous study of the particular flow geometry of interest here, although Otero et al.
(2002) did consider the somewhat analogous problem of Rayleigh–Bénard convection
with an imposed heat flux. Their analysis did not solve a full variational problem,
but rather restricted attention to piecewise linear profiles in the temperature field.
Therefore, we are not only interested in generating the best possible bound using
numerical continuation methods, but also in considering more restrictive classes of
smooth trial functions that nevertheless enable us to capture the dominant scaling of
the mechanical energy dissipation rate.

Towards these ends, the rest of the paper is organized as follows. In § 2, we define
appropriately the stress-driven flow model, and also prove that, for a given surface
stress, laminar flow yields the largest possible mechanical energy dissipation rate. In
§ 3, we generate a lower bound on the mechanical energy dissipation rate. We first
construct a simple lower bound using a special family of trial functions for the long-
time average of the flow. These simple trial functions capture the dominant scaling
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Figure 1. Schematic diagrams comparing (a) the surface-stress-driven flow A;
(b) the body-forced flow B.

of the flow associated with a lower bound on the mechanical energy dissipation rate,
and they prove very useful in developing an understanding of the significant physical
processes, since the effect of the constraints of total power balance and streamwise
momentum balance can be identified explicitly.

However, as we show in § 4, this simple bound leads to a quantitative underestimate
of the magnitude of the the best possible lower bound on the mechanical energy
dissipation rate consistent with the imposed constraints of streamwise independence,
total power balance, and streamwise mean momentum balance. To establish this
fact, and to identify the actual numerical value of the best possible bound in
a straightforward manner, we first show the equivalence of the upper surface
stress-driven flow to a body-forced flow model with a stress-free upper surface
boundary condition, which is much more straightforward to consider within the
CDH framework. We then solve the full CDH problem to achieve the rigorous lower
bound, using a numerical method similar to the one discussed in PK03, and present our
results for the bounds and the associated flow structures. We discuss the properties of
our findings, comparing the results of the two distinct calculations, paying particular
attention to the extent to which the restrictive trial functions discussed in § 3 manage
to capture properties of the general flow calculated in § 4. Finally, in § 5, we draw
some conclusions, and suggest some future work, in particular the direct numerical
simulation of the flow to investigate how closely real flows approach the calculated
bounds.

2. Formulation
We consider an incompressible layer of fluid of constant depth h, density ρ and

kinematic viscosity ν. We impose long-time-average and both x-periodic and y-
periodic boundary conditions across −Lx < x < Lx , and −Ly < y < Ly and so
introduce a time and horizontal averaging operator:

q(x, t) ≡ lim
T →∞

1

4LyLxT

∫ T

0

∫ Ly

−Ly

∫ Lx

−Lx

q(x, t) dx dy dt, (2.1)

and a volume average:

〈q(x, t)〉 =

∫ 0

−h

q̄ dz. (2.2)

In this flow, which we shall refer to subsequently as flow A, the motion is driven
by surface stress τ = ρu2

� applied at the upper surface, z = 0, where u� is the friction
velocity. It is shown schematically in figure 1(a). At the bottom z = −h, we impose
a no-slip boundary condition. We non-dimensionalize the Navier–Stokes equations
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using ρ, ν and h to define units of length, time and mass. The non-dimensional
Navier–Stokes equations for flow A are thus

ut + u · ∇u + ∇p − ∇2u = 0, (2.3)

with the incompressibility condition

∇ · u = 0, (2.4)

and boundary conditions

u1z(0) = G, u2z(0) = 0, u3(0) = 0; u1(−1) = u2(−1) = u3(−1) = 0. (2.5)

The important non-dimensional group is the Grashof number, defined as

G ≡ τh2

ρν2
=

u2
�h

2

ν2
. (2.6)

We characterize the flow using the mechanical energy dissipation per unit mass, ε:

ε ≡ ν3

h4
〈‖∇u‖2〉, (2.7)

where the non-dimensional deformation is

‖∇u‖2 ≡ |∇u1|2 + |∇u2|2 + |∇u3|2. (2.8)

The laminar solution to equations (2.3) and (2.4) is simply the Couette flow
uL = G(z + 1)ı̂ . We can now show that ε in (2.7) is bounded from above by the
mechanical energy dissipation of this laminar solution,

εL ≡ ν3

h4
G2 =

u4
�

ν
. (2.9)

Taking the time and volume average of the dot product of u and the left-hand side
of (2.3), and applying the boundary conditions, we obtain

〈‖∇u‖2〉 − G〈ū1z〉 = 0 (D1 = 0), (2.10)

using the convention that Di denotes a group of important terms. Using this result
to eliminate the cross-terms on the left-hand side of

〈|∇u − ∇uL|2〉 � 0, (2.11)

we obtain

εL � ε. (2.12)

3. A lower bound for flow A
In this section we apply relatively elementary arguments to flow A and obtain a

complementary lower bound on the mechanical energy dissipation rate ε. Although
the basic idea is similar to the CDH method, the procedure is simpler than that
required to generate the full bound, as we show in § 4. As we see, the two bounds
have the same asymptotic structure and scaling for large G, although, naturally, the
simpler bound is not as strong. To generate the bound, we exploit certain properties
of the flow. As discussed above, (2.10) yields an expression which captures the long-
time total power balance of the flow, with the dissipation being balanced by the
energy injection through stress at the top surface into the mean flow shear. We can
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obtain a second expression for the dissipation by writing the total flow velocity as
u = ū1(z)ı̂ + u′(x, t) and then using that decomposition to obtain

〈‖∇u‖2〉 −
〈
ū2

1z

〉
− 〈‖∇u′‖2〉 = 0 (D2 = 0). (3.1)

Finally, horizontally averaging the streamwise Navier–Stokes momentum equa-
tion (2.3) yields the constraint

u′
1u

′
3 − ū1z + G = 0 (D3 = 0). (3.2)

This important momentum flux constraint shows that the applied stress at the top
surface is transmitted downwards by the Reynolds’ correlation, u′

1u
′
3, and ultimately

balanced by a viscous bottom stress. We now use the three results (2.10), (3.1), and
(3.2) above to obtain a lower bound on 〈‖∇u‖2〉.

3.1. Constructing the simple bound

Assuming that θ(z) is an arbitrary function of z, we combine the left-hand sides D1,
D2 and D3 of (2.10), (3.1) and (3.2) respectively to obtain the expression

D2 + αD1 + G

∫ 0

−1

θ(z)D3 dz = 0, (3.3)

where α is an adjustable parameter which we will select to obtain the best possible
bound for given choices of θ(z). (Although θ(z) bears some resemblance to the
multiplier functions used in Doering et al. (2003), there are no boundary conditions
required, as the role of θ(z) is merely to impose the horizontally averaged streamwise
momentum constraint D3 = 0, as defined in (3.2), at all heights in the flow
domain.) This expression may be thought of as a combination of a definition for
the dissipation ε in terms of a decomposition into mean and perturbation velocity
components and two constraints which impose total power balance and streamwise
mean momentum balance. These two constraints – as well as the implicit imposition
of the incompressibility condition (2.4) – are the only ones imposed on u, and in
particular, it is vital to appreciate that we do not require u to be a solution of the
Navier–Stokes equations (2.3). Of course, any solution of the Navier–Stokes equations
does indeed satisfy these constraints, and so a bound constructed for this broader
class of functions u is also a bound for the incompressible velocity solutions to the
Navier–Stokes equations.

Completing a square in (3.3) we find that

(1 + α)〈‖∇u‖2〉 = G2〈θ〉 − 1
4
G2〈(α − θ)2〉 +

〈 [
ū1z + 1

2
G(α − θ)

]2
〉

+ J[u′; θ], (3.4)

where

J[u′; θ] ≡ 〈‖∇u′‖2〉 + G〈θu′
1u

′
3〉. (3.5)

Analogously to the approach of the CDH method, a necessary condition for (3.4) to
generate a lower bound on the dissipation is the functional constraint that

J[v; θ] � 0, (3.6)

for all incompressible vector fields v which satisfy the same boundary conditions as
u′. This is a constraint on the allowable functions θ(z), which leads to a variational
problem discussed in the Appendix. Such constraints are commonly referred to as
‘spectral constraints’ within the framework of the CDH method, although unlike in
the CDH method, we impose no boundary conditions on θ(z), just that J � 0.
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Figure 2. (a) The variation with z of the exponential class of functions θ (z) as defined in (3.10)
for: m = 2, 4, 6 and 10. In each case, we have plotted θ (z) at the value of G corresponding to
the smallest value at which θ (z) with the given value of m leads to the best lower bound on the
mechanical energy dissipation rate. (b) Γ (as defined in (3.7)) against G for various members
of the family of functions θ (z) as defined in (3.10), each curve being labelled by the associated
value of the parameter m. The smallest value of G for which each θ (z) associated with a
particular value of m leads to the best lower bound on the mechanical energy dissipation rate
is marked with a circle. Note that Γ = ε/εL must lie above every curve. The best lower bound
on Γ for this family is thus given by the envelope of these curves. The asymptotic value of Γ
for large G defined by (3.15) is shown with a dashed line.

Requiring (3.6) and 1 + α > 0, we can obtain a lower bound on ε by dropping the
final two non-negative terms on the right-hand side of (3.4) to obtain

Γ ≡ ε/εL = G−2〈‖∇u‖2〉 �
〈θ〉

1 + α
− 〈(α − θ)2〉

4(1 + α)
. (3.7)

This bound (3.7) is optimized, for a given choice (or class of choices) of θ , by
maximizing the right-hand side as a function of α. The optimal value of α is

1 + α =
√

〈(1 − θ)2〉, (3.8)

in which case

Γ � 1
2
[1 + 〈θ〉 −

√
〈(1 − θ)2〉]. (3.9)

We thus can investigate what the properties of this bound are for particular choices
for θ(z).

3.2. The exponential family

As a specific example for (3.9), we consider the ‘exponential’ class of functions θ:

θ(z) = βm cosechm e−m−2mz . (3.10)

Here, m is a profile parameter and the amplitude β is defined so that β = 〈θ〉.
The function is chosen so that if m 
 1, there is a boundary layer at the bottom,
with depth O(1/m), decaying towards very small values in the interior and as z →
0. Therefore, unsurprisingly, since θ essentially imposes the horizontally averaged
streamwise momentum constraint (3.2), the bottom boundary layer viscous stress is
critically important in the flow balance. Several curves for different values of m are
shown in figure 2.
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To ensure that that every member of this family satisfies the condition J � 0
(as defined in (3.5)) we use the numerical solution of the eigenproblem in the
Appendix to determine βG as a function of m. For the family (3.10) the bound in
(3.9) is then

Γ � 1
2
[1 + β −

√
1 − 2β + β2m coth m]. (3.11)

Plotting the right-hand side of (3.11) as a function of G for several values of m we
obtain the result in figure 2(b). The best lower bound on Γ is then obtained as the
envelope generated by varying m.

If G 
 1 then we can simplify (3.11) and obtain a compact expression for the lower
bound. With G 
 1 we see from figure 2 that the optimal m is also large. In this case
the numerical solution in the Appendix gives

βG ≈ 38.640m. (3.12)

Although m is large, β2m is small and the right-hand side of (3.11) simplifies to

Γ � β − 1
4
β2m. (3.13)

The optimal value of m is now found by using (3.12) to eliminate β from (3.13) and
then maximizing the left-hand side of the inequality (3.13) with respect to m. This
gives

β =
2√
3

(
38.640

G

)1/2

, m =
2√
3

(
G

38.640

)1/2

. (3.14)

This expression implies that the boundary layer depth of the family θ defined in (3.10)
is O(G−1/2) as G → ∞. With the optimal m at hand, the sharpest bound available
from (3.13) is

γ ≡ Γ G1/2 =
εh

u3
�

� 4.785. (3.15)

This result is satisfying because the lower bound on the dissipation becomes in-
dependent of ν, and corresponds to an expected inertial scaling (ε = O(u3

�/h)) as G →
∞. Also, although this approach does not determine all the properties of the flow as-
sociated with the bound, from the expression for total power balance (3.1)

〈ū1z〉 = ū1|z=0 = ū1(0) = O
(
G1/2

)
. (3.16)

Therefore, the lower bound is associated with a flow where the surface mean
velocity has been decelerated (presumably by turbulent processes) from the laminar
flow value ū1(0) = G to a typically substantially smaller value which is O(G1/2).
Dimensionally, this surface velocity ū1(0) = O(u�), independently of viscosity, which
appears reasonable.

We experimented with more elaborate classes of θ than the exponential functions
defined in (3.10), e.g. with boundary layers at both z = 0 and z = 1. This results
in modest improvements on (3.15) by increasing the numerical coefficient to above
5. However the CDH method is more systematic, and so in the next section we
construct the best possible bound subject to the same imposed constraints of total
power balance (2.10) and horizontally averaged streamwise momentum balance (3.2),
paying particular attention to the extent to which the simplified bound constructed
above compares to this best possible bound.
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4. The optimal lower bound obtained with the CDH method
For technical mathematical reasons, when using the CDH method, it is more

convenient to consider a flow that is different from the flow A considered above.
These technical difficulties are associated with the treatment of boundary variations
(see e.g. Courant & Hilbert 1953) due to the non-vanishing stress at the top z = 0 of
the flow domain. The flow geometry of this second flow, which we shall henceforth
refer to as flow B, is the same as flow A, although the boundary conditions and
forcing are different. In flow B, we assume that there is a stress-free upper boundary
condition, u1z(0) = 0. We also assume that flow B is driven by a depth-dependent
body force, Gσz ı̂ , where ı̂ is the unit vector in the streamwise x-direction, and σ (z) is
a non-dimensional shape function, which is zero at z = 0 (to allow for the stress-free
condition) and is normalized so that 〈σ 2〉 = 1. For this flow, the governing equations
are

ut + u · ∇u + ∇p − ∇2u =Gσz ı̂

∇ · u =0.

}
(4.1)

with homogeneous boundary conditions

u1z(0) = 0, u2z(0) = 0, u3(0) = 0; u1(−1) = u2(−1) = u3(−1) = 0. (4.2)

Although different, under certain circumstances, and for particular choices of the
shape function σ , the behaviours of flow A and flow B can approach equivalence
arbitrarily closely. This agreement can be obtained by allowing σ to vary substantially
only in an arbitrarily narrow upper boundary region. Therefore, flow B, driven by
a body force concentrated near z = 0, and shown schematically in figure 1(b), can
be used as a model for the surface-stress-driven flow A discussed above. Flow B is
mathematically convenient within the context of a variational problem, due to the
technical difficulties mentioned above associated with the fixed-stress upper boundary
condition of flow A. An example of the possibility for close correspondence can be
identified by recalling that for flow A, the laminar state solution is uLz = G, a Couette
profile. For flow B we can simply choose σ ≈ −1 over all but a thin surface layer,
where σz = 0 as σ changes from −1 to 0 at the boundary. The laminar solution for
flow B, uLz = −Gσ ı̂ , then closely approximates the laminar solution to flow A.

In this section we apply the CDH method to find a lower bound on the dissipation ε

in terms of G and the structure of the shape function σ (z). Following the conventional
methodology for flow B, we consider a non-unique decomposition of the velocity field
u = (u1, u2, u3) into a steady one-dimensional ‘background’ φ(z)ı̂ that agrees with
the actual fluid velocity u at the boundaries and a three-dimensional, unsteady
‘fluctuation’ v(x, t) = (v1, v2, v3) with homogeneous boundary conditions, i.e.

u(x, t) = φ(z)ı̂ + v(x, t), (4.3)

where

v = φ = 0 at z = −1, φz = v1z = v2z = v3 = 0 at z = 0. (4.4)

It is important to appreciate that this decomposition is non-unique, and that the
background field φ does not necessarily correspond to horizontal spatial averages of
the total flow fields since horizontal averages of the so-called ‘fluctuation’ field v̄ may
be non-zero. It is also convenient to separate the fluctation velocity v into a mean
part v̄1(z)x̂ and a meanless part v̂(x, t):

v(x, t) = v̄1(z, t)ı̂ + v̂(x, t), v̂ = 0. (4.5)
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We consider the Lagrangian functional L:

L = lim
t→∞

1

t

∫ t

0

[〈‖∇u‖2〉 + a〈v · (ut + u · ∇u + ∇p − ∇2u − Gσz ı̂)〉] dt. (4.6)

In this expression, av is a Lagrange multiplier that formally imposes the Navier–
Stokes equations (4.1). However, after some manipulation, since v = u − φ ı̂ , (4.6) is
actually equivalent to

L = 〈‖∇u‖2〉 + a(〈‖∇u‖2〉 + G 〈σ ū1z〉) + 〈aφz (u1u3 − ū1z − Gσ )〉, (4.7)

where terms involving time derivatives have been assumed to be zero over sufficiently
long time averages. Therefore, the actual constraints that are being applied are merely
total power balance, and horizontally averaged streamwise momentum balance, just
as in § 3. Indeed, if we choose the body forcing shape function σ ≈ −1 except near
the upper boundary, the constraints imposed in (4.7) approach arbitrarily close to the
constraints D1 = 0 and D3 = 0 imposed in (3.3), if we identify α with the Lagrange
multiplier a, and Gθ with the Lagrange multiplier aφz. This expression also shows a
further attraction of using the CDH method decomposition: the background φ acts
as a Lagrange multiplier to impose the horizontally averaged streamwise momentum
constraint defined in (3.2).

In this section, using the calculus of variations, we aim to find the minimum
stationary value of L over all possible u, v, φ, and a consistent with the boundary
conditions. Using the decomposition (4.5), L can also be written as

L[a, φ, v] =
〈
φ2

z

〉
+ (2 + a) 〈φzv̄1z〉 + (1 + a)

〈
v̄2

1z

〉
+ (1 + a)〈‖∇v̂‖2〉

+ a 〈v̂1v̂3φz〉 + a 〈v̂ · ∇p〉 − aG 〈v̄1σz〉. (4.8)

From this expression, it is now apparent specifically why we choose to consider the
body-forced flow B rather than the equivalent surface-stress-driven flow A. Modelling
the surface localized stress by means of a body force that varies with depth allows the
effect of the last term in this expression to be treated straightforwardly. On the other
hand, if the effect of the stress were described purely through a boundary condition
on the flow velocity (i.e. we formulated the same problem for flow A) this term would
become a surface integral. As already mentioned, this would lead to complications
due to boundary variation when variations are taken with respect to v̄1 to determine
stationary values of L, that can be straightforwardly avoided by considering flow B.

Throughout the derivation of the equations that must be satisfied for bounding
solutions for the functional L, we allow the shape function σ to take arbitrary form
(subject to the normalization constraint 〈σ 2〉 = 1). However, before we calculate
solutions numerically, we discuss, in § 4.3, the selection of a particular form of σ for
which it is possible to draw a correspondence between flows A and B. Whatever the
particular choice of σ , if φ can be chosen so that L has a minimum over all possible
fields v, then this value of L must lead to a rigorous lower bound on the dissipation,
as any actually realizable u that satisfies the governing equations must be accessible
by some appropriate choice of v. Maximizing the minimum over all φ and a then
yields the best possible lower bound (see Kerswell 1998 for more discussion of the
underlying principles).

A necessary condition for an extremum of L to exist is that L satisfies six Euler–
Lagrange equations: with respect to the Lagrange multiplier a; the background field
φ; the mean part of the streamwise fluctuation velocity v̄1; and the three meanless
components of the fluctuation field v̂1, v̂2 and v̂3. Using the Euler–Lagrange equation
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for variations with respect to v̄1, and applying the boundary conditions in (4.4), we
can relate v̄1z to φz through

v̄1z = −φz +
λ

2
(φz − Gσ ) where λ ≡ a

a + 1
, (4.9)

which together with the Euler–Lagrange equation for variations with respect to φ

yields

λφz = (λ − 2)Gσ + 2v̂1v̂3. (4.10)

Using (4.9) and (4.10), the remaining Euler–Lagrange equations become

λ = 〈‖∇v̂‖2〉/G 〈σ v̂1v̂3〉, (4.11)

2∇2v̂ − λφz




v̂3

0

v̂1


 = ∇p̂, (4.12)

where the pressure has been rescaled by p̂ = p/(a + 1), and the meanless fluctuation
velocity v̂ is incompressible and satisfies the homogeneous boundary conditions

v̂ = 0 at z = −1, v̂1z = v̂2z = v̂3 = 0 at z = 0. (4.13)

Cubic terms of the form 〈v̂1v̂3φz〉 and 〈v̂1v̂3σ 〉 have been eliminated by taking
the volume average of the dot product of v̂ and the left-hand side of (4.12) and
manipulating the Euler–Lagrange equation for variations with respect to a using the
momentum flux constraint

v̂1v̂3 − φz − v̄1z − Gσ = 0, (4.14)

which can be obtained by combining (4.9) and (4.10). This constraint is clearly
equivalent to D3 = 0 in (3.2). Expressions for the cubic terms are also useful in that
using them in the volume average of the product of (4.10) and v̂1v̂3 eventually yields
the expression

〈‖∇v̂‖2〉 = a〈(v̂1v̂3)
2〉, (4.15)

and so any non-trivial solution with v̂ = 0 requires a > 0, and hence 0 < λ < 1.
Substituting (4.9) into (4.8) eventually yields

L = G2 − 〈[λφz + (2 − λ)Gσ ]2〉
4(1 − λ)

+
H

(1 − λ)
, (4.16)

where H is the quadratic form

H[φ, v̂, λ] = 〈‖∇v̂‖2〉 + λ 〈v̂1v̂3φz〉. (4.17)

A stationary value of L is a lower bound on ε if the minimum of the quadratic
form H exists as v̂ ranges over the set of incompressible vector fields which satisfy
the boundary conditions in (4.13). This requires that a > 0 and that the spectral
constraint

H[φ, v̂, λ] � 0 (4.18)

is satisfied for all incompressible vector fields satisfying the boundary conditions in
(4.13).

In this case the lower bound on the non-dimensional dissipation is thus

〈‖∇u‖2〉 �
h4

ν3
εmin = G2 − 〈[λφz + (2 − λ)Gσ ]2〉

4(1 − λ)
. (4.19)
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These expressions are superficially similar to those derived in § 3, particularly when we
draw the correspondence of aφz and Gθ . However, before comparing the equations
closely, we explain briefly how we identify the solutions for v̂, λ, and φ associated
with the best possible lower bound on ε.

4.1. Solution technique

Here we apply the technique discussed in PK03. We solve the Euler–Lagrange
equations (4.10)–(4.12) numerically using the method of pseudo-spectral collocation
(Boyd 2001), assuming no streamwise dependence of the bounding solution (Busse
1969a, 1970), and hence ∂/∂x = 0.

We expand the background and fluctuation fields in Chebyshev polynomials in
the vertical direction to ensure adequate resolution in the expected boundary layers.
Spanwise variation is expressed in Fourier modes. The calculation of the asymptotic
lower bound can be separated into two steps: first we identify the energy stability point
GES where the laminar solution ceases to be a global attractor (the uniqueness implies
that the laminar solution is both upper and lower bound below this energy stability
point). We then use the numerical continuation package PITCON (Rheinboldt &
Burkhardt 1983a, b) to continue the solution of the Euler–Lagrange equations away
from the laminar solution for higher G, adding further structure through spanwise-
periodic subfields as required to satisfy the spectral constraint (see PK03 for further
details).

4.2. Continuation calculation from the laminar solution

From (4.10) and (4.14), the laminar solution (where u = uL(z)ı̂) corresponds to λ = 1
(or equivalently a → ∞), v̄1 = 0, and

φLz = uLz = −Gσ, (4.20)

which recovers the laminar dissipation εL of ν3G2/h4 = u4
�/ν. The spectral constraint

for the laminar solution is thus

HL ≡ 〈‖∇v̂‖2〉 − G 〈σ v̂1v̂3〉 � 0, (4.21)

for all incompressible v̂ satisfying the boundary conditions (4.13). The circumstances
under which the laminar solution satisfies the spectral constraint (4.21) are, as in the
plane Couette flow considered in PK03, linked to the energy stability of the laminar
solution. It can be shown that (4.21) is equivalent to the requirement that the laminar
flow is energy stable to arbitrary perturbations v̂, in the sense that the kinetic energy
of these perturbations decays with time (see Joseph 1976).

Therefore, while the flow is energy stable, the dissipation has a lower bound given
by the laminar solution, i.e. 〈‖∇u‖2〉 = G2, irrespective of the particular structure of
the body-force shape function σ . As G is increased, for any given σ , there must be a
value at which the flow becomes marginally energy stable, i.e. a non-trivial velocity
perturbation develops such that (4.21) is marginally satisfied. As G is increased, the
laminar solution will no longer satisfy the spectral constraint (4.21), whereas the
new perturbation will, and it is possible to continue this non-trivial solution (using
PITCON) to higher G (and in general λ < 1) while still satisfying the set (4.10)–(4.12)
and the spectral constraint (4.18) for non-trivial φz and λ. Therefore, the second
term on the right-hand side of (4.19) becomes non-zero, and the lower bound on the
dissipation decreases from its laminar value G2.
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4.3. Appropriate choice of shape function σ

As already noted, for the two flows A and B to approach equivalence, it is necessary
for the body-forcing shape function σ to vary significantly only within a sufficiently
thin upper boundary region. As possible appropriate choices for σ , we considered a
sequence of shape functions σ of the form

σ (z) = −c1(1 − ec2z), c1 =

√
2c2

2c2 − 1 + 2e−c2 − e−2c2
, (4.22)

where c1 is defined by requiring that 〈σ 2〉 = 1. As c2 increases, and hence the region
over which σ differs significantly from −1 becomes progressively localized in the
vicinity of the upper boundary at z = 0, the flows driven by these body forcings
approach flow A arbitrarily closely.

Indeed, for this choice of σ , as c2 increases, we found that the critical G for energy
stability converged towards Gc = GES = 51.7, which is naturally the energy stability
point for flow A. At this critical G, the laminar spectral constraint (4.21) is marginally
satisfied, and there exists some marginal incompressible eigenfunction v̂ES such that
HL[φL, v̂ES, 1] = 0 and so the flow is marginally globally asymptotically stable or
energy stable (Joseph 1976). The marginal eigenfunction v̂ES has horizontal spanwise
wavenumber l1 = lES

= 2.08, consistently with the results presented in the Appendix.
From this point we can start our continuation by adjusting the amplitude of the
eigenfunction until convergence to a non-trivial solution for G > GES occurs, and
march on to higher G.

4.4. The spectral constraint and incoming wavenumbers

During the continuation process with PITCON, it is always necessary to check
that the solutions to the Euler-Lagrange equations (4.10)–(4.12) actually correspond
to a rigorous lower bound on dissipation, i.e. they satisfy the spectral constraint.
Following PK03, enforcing H to be positive-semidefinite corresponds to solving a
linear eigenvalue problem of the form

2∇2v̂ − λφz




v̂3

0

v̂1


 − ∇p̂ = µv̂ (4.23)

over the particular function space Ψ defined as

Ψ = {v̂ | lv̂2 + v̂′
3 = 0, v̂ = 0, v̂(−1) = 0, v̂1z(0) = v̂2z(0) = v̂3(0) = 0} (4.24)

with eigenvalues µ � 0 over the real space of l, the wavenumber in the cross-stream
direction. Using µ(l) to denote the maximum of this eigenvalue problem in l, it is quite
clear that µ(l) = 0 correspond to flow fields that satisfy the Euler–Lagrange equations
(4.10)–(4.12). Following the continuation procedure, we find similar behaviour to that
discussed in PK03. At the critical G when GES = 51.7, a unique l1 = lES exists such
that µ(lES) = 0. This wavenumber l1 satisfying µ = 0 varies with the continuation
of G, and at a certain point another local maximum develops in µ(l) (see PK03
figure 1 for a clear demonstration of a new local maximum emerging). We extend the
solution as PK03 previously did to include more fluctuation subfields every time this
behaviour happens, and so we can identify the bifurcation structure of the bounding
solution as G increases.
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Figure 3. (a) Variation of the lower bound on the scaled long-time averaged dissipation rate
γ as defined in (3.15) with G. The predicted asymptotic value at high G is marked with a
dashed line. The bifurcation points at which new spanwise wavenumbers enter the solution
are marked with circles. (b) dγ /dG against G (where γ is as defined in (3.15)), showing that
dγ /dG = O(G−3/2) as G → ∞ (the dashed line is a plot of G−3/2).

4.5. Results

We have solved (4.10), (4.11), and (4.12) subject to the boundary conditions (4.13)
and the spectral constraint (4.18). We have calculated to the 7th bifurcation (G =
7.06 × 105), with certain asymptotic behaviours being observed. The most important
asymptotic behaviour is the scaling of the lower bound of the dissipation rate εmin

as defined in (4.19). To ensure accurate comparison between the results for the
surface-stress-driven flow A and the body-force-driven flow B, we chose σ to take
the form (4.22) with sufficiently large c2 so that, to the finite resolution of our
vertical representation in terms of Chebyshev polynomials, the shape function σ is
indistinguishable from the discontinuous profile

σ (z) = 0, z = 0, σ = 0, z = 0. (4.25)

This essentially entailed increases in c2 whenever more Chebyshev polynomials were
required to be added to ensure adequate vertical resolution for the boundary layers
associated with the bounding solutions.

As we have discussed in § 2, the upper bound εmax = ν3G2/h4 = u4
�/ν = εL, and

from the continuation calculation we can see in figure 3(a) that the lower bound
h4εmin/ν

3 = O(G3/2) as G → ∞, confirming that the simple bound developed in § 3
still captures the correct asymptotic scaling. This is due to an exact cancellation of
G2 in our functional L, which we discuss in more detail below. The lower bound
decreases from G2 at the energy stability point and develops a local minimum at
G = 170.067, where the scaled dissipation γ , defined in (3.15), is bounded by

γ = Γ G1/2 =
h4ε

ν3G3/2
=

hε

u3
�

� 6.5751. (4.26)

The lower bound then increases with G, and gradually approaches an asymptotic
value.

Indeed the largest value of G that we are able to consider is constrained by round-
off error, due to the sensitivity of the spectral constraint. In the plateau region of
the µ(l) graph at G = 7.06 × 105, where a new spanwise mode is about to emerge,
µ = O(10−6) and v̂new = O(1), whereas the largest term on the left-hand side of (4.23)
is O(108) near the surface z = 0. As discussed in PK03, this huge difference in orders
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tests the capability of double precision, and made it impossible to identify the narrow
region of convergence for the next bifurcation. At this stage, γ � 7.507. However,
the bound on γ has clearly not yet converged to an asymptotic value. This lack of
convergence can be explained by appreciating that lower-order (in terms of powers
of G1/2) contributions to the bound are still significant. Indeed, since as shown in
figure 3(b) dγ /dG = O(G−3/2), the data suggest that γ � 7.531 − 20.3G−1/2 is a more
appropriate form for the lower bound.

Considering the dimensional dissipation ε, as already noted this asymptotic scaling
implies that ε = O

(
u3

�/h
)

as G → ∞, and so the best possible bound on the
mechanical energy dissipation rate is independent of the kinematic viscosity ν, which
is to be expected at high G, and is consistent with the results presented in § 3.
Although not reported here, the bifurcation structure is similar to that discussed in
detail in PK03.

Therefore, it is apparent that the best possible bound on dissipation rate generated
using the CDH method (i.e. γG1/2 = Γ � 7.531G−1/2 − 20.3G−1) exhibits the same
leading-order scaling as that generated by using the family of trial functions θ

defined in (3.10) (i.e. Γ � 4.785G−1/2). Not unexpectedly, the trial function approach
under-estimates the best possible coefficient for the leading-order scaling by 35%.
The reasons for this under-estimation can be better understood if we have a detailed
understanding of the properties of the best possible bounding solutions to the problem
formulated using the CDH method.

4.6. Detailed discussion of the CDH bounding solution

The most important defining aspects of the bounding solution are shown in figure 4.
Figure 4(a) shows how the parameter λ, defined in (4.9), varies with G. Subsequently
to the energy stability point (where λ = 1) there is a relatively narrow range of G in
which λ decreases with an O(G−1) dependence. However as G → ∞, λ → 3.76G−1/2.
Figure 4(b) shows that the flow develops boundary layers at both the top and bottom.
Both boundary layers have thicknesses of O(G−1/2) as G → ∞, though the particular
selection of this scaling factor is somewhat arbitrary, as it depends on our choice of
the definition of an appropriate edge of the boundary layer.

For the lower boundary layer, we define its edge as the location where the gradient
φz has dropped to 2.5% of its maximum (boundary) value. Since φz is by definition
zero at the upper boundary, we are unable to use exactly the same definition. However,
near the upper boundary, as is apparent in figure 4(c), where aφz is plotted against
z for G = 12102, φz drops to negative values before reverting towards zero in the
interior of the flow. (Somewhat similarly to the situation discussed in § 3, the structure
of φz, acting as it does to impose the horizontally averaged streamwise momentum
constraint, as is apparent in (4.7), tends towards being zero in the interior of the flow,
where this constraint does not play a strong role.) Therefore, we define the edge of
the upper boundary layer as being located at the place where φz reaches its local
minimum value. The existence (or not) of an upper boundary layer is a qualitative
difference between the solutions associated with the two bounds, and is likely to be
significant in the under-estimation of the best possible bound by using the family of
functions θ(z) as defined in § 3.2. We discuss the differences in more detail below in
§ 4.7. Also on figure 4(c), we plot Gθ(z) at G = 12102 (where the appropriate value of
m is m = 5) that corresponds to the lower bound on the mechanical energy dissipation
rate calculated in § 3, showing clearly that the two profiles are similar, except in the
upper boundary layer.

Furthermore, the existence of an identifiable upper boundary layer in the bounding
solution imposes an obvious constraint on the required structure of the shape function
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Figure 4. (a) The parameter λ (as defined in (4.9)) against G. The dashed line is G−1 and
the dash-dotted line is G−1/2. (b) The upper boundary layer thickness against G, (shown
with a solid line, and defined by the distance between the boundary and the location of the
minimum in φz) and the lower boundary layer thickness against G (dashed line, and defined
by the distance between the lower boundary and the location where φz drops to 2.5% of its
boundary value). The dash-dotted line is proportional to G−1/2. The staircase structure is due
to the finite spectral representation in terms of Chebyshev polynomials. (c) Comparison of
the vertical structure of the Lagrange multiplier aφz for the horizontally averaged streamwise
momentum for the bounding solutions generated by the CDH method (plotted with a solid
line) and the equivalent Lagrange multiplier Gθ (plotted with a dashed line) for bounding
solutions generated in § 3 when G = 12102. (d) The horizontally averaged streamwise velocity
ū1 normalized by ū1(0) at various values of G: 576.8 (thin solid line); 5185 (dashed line);
12102 (dotted line); 87338 (dot-dashed line); 234360 (thick solid line). In the inset we compare
the unscaled mean velocity profile associated with the lower bound on the mechanical energy
dissipation rate (solid line) with the laminar velocity profile (dashed line) at G = 576.8.

σ for correspondence to be possible between flow A and flow B. For the localized
variation of σ near the upper boundary to be an appropriate model for surface-stress
forcing, the region of variation of σ must clearly be embedded within the upper
boundary layer of the velocity fields associated with the bounding solutions.

The effect of these various scaling relationships on the calculated bound can be
understood by consideration of stationary values of the functional L (as defined in
(4.16) corresponding to circumstances when H = 0). As G → ∞, since 〈σ 2〉 = 1, there
is an exact cancellation in the O(G2) terms, and so

L ≈ −
λ2

〈
φ2

z

〉
4

− λG 〈σφz〉. (4.27)
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Balance in (4.10) near the boundaries implies that φz = O(G3/2) in the boundary
layers. Since, as shown in figure 4, the boundary layer thickness is proportional to
G−1/2 at high G, 〈φz〉 = φ(0) = O(G), while 〈φ2

z 〉 = O(G5/2). From (4.27), it is clear
that both λ2〈φ2

z 〉 and λG 〈σφz〉 are of O(G3/2), exactly the same scaling we have found
in our solution for L. Since a > 0, and so λ > 0, equation (4.10) implies that φz has
the opposite sign to σ , and so −λG 〈σφz〉 is positive. Furthermore, since σ ≈ −1 over
virtually all the depth of the layer, −〈σφz〉 ≈ 〈φz〉 = O(G3/2). It is therefore apparent
that the expression (4.27) contains two O(G3/2) terms, one positive and one negative.

These results also allow us to interpret the properties of the mean profile, as plotted
in figure 4(d). Using (4.9) and (4.10),

ū1z =
λ

2
[φz − Gσ ] = −Gσ + v̂1v̂3. (4.28)

These expressions have several important implications, which help to explain why the
lower bound on the dissipation is so much less than the laminar solution (particularly
at higher values of G) as is apparent in the inset of figure 4(d). Near the upper and
lower boundary, since φz = O(G3/2) and λ = O(G−1/2), uz = O(G), the same order of
gradient as the laminar solution. Indeed, provided the region over which σ varies is
embedded within the boundary layer of the bounding solutions (i.e. where v̂1v̂3 → 0),
uz ≈ G in the immediate vicinities of the two boundaries. Therefore, the mean profile
has the same strong gradient G in narrow boundary layers, of depth O(G−1/2), as
the laminar solution. On the other hand, throughout the interior of the flow, since
v̂1v̂3 � 0 and hence φz ≈ 0, ū1 has a weak shear of −λGσ/2 = O(G1/2), as is also
clear in the inset figure.

Interestingly, the bounding profile ū1(z) is qualitatively similar in structure to that
predicted to maximize the long-time average of the dissipation in plane Couette flow
(see PK03). The pair of strong boundary layers with a significantly weaker interior
shear may therefore be a generic characteristic of solutions associated with bounding
the dissipation in general shear flow problems. It is also important to remember that,
as noted by PK03, the boundary layers that are predicted by the CDH method do not
exhibit the characteristic log-layer structure of high-Reynolds-number wall-bounded
flows. This discrepancy raises the issue of how physically realistic the bounding
profiles ū1(z) are, an issue we return to in the next section.

Also, from (4.28), it is apparent that

u(0) =
λ

2
[φ|z=0 − G〈σ 〉], (4.29)

which is O(G1/2). Therefore, at larger values of G, there is once again substantial
deceleration of the surface horizontally averaged streamwise velocity for the lower
bounding solutions by comparison with the laminar solution. Indeed, just as we
observed in § 3, the dimensional surface mean velocity is ū1(0) ∝ (τ/ρ)1/2 = u�, which
is independent of viscosity. As we noted above, this is entirely reasonable, since,
when G is large, we expect physically that the viscosity ν is unimportant, and so
the flow is driven by the friction velocity u�. This characteristic, shared by the two
bounds, appears to be fundamental to the determination of the O(u3

�/h) scaling for
the mechanical energy dissipation rate.

4.7. Comparison of the properties of the two bounds

From an understanding of the various properties of the two bounds which we
have constructed, it is apparent why the bound constructed in § 3 under-estimates
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quantitatively the bound constructed numerically using the CDH method. Funda-
mentally, this occurs because, unlike in the CDH method, the Lagrange multiplier θ

cannot be used formally to construct the horizontally averaged velocity field associated
with the bounding solution. Therefore, there is no way to calculate the contribution
from the second to last term 〈[ū1z + G(α − θ)/2]2〉 on the right-hand side of (3.4),
which inevitably will lead to a non-zero contribution to the value of the dissipation
ε. Indeed, in general, non-zero values of this term will imply that the value of the
parameter α given in (3.8) that leads to (3.9) actually does not correspond to the best
possible value of α to minimize ε.

On the other hand, since the CDH method allows direct determination of all aspects
of the velocity fields associated with the bounding solution, we are able to analyse the
significance and structure of the (meanless) fluctuations associated with the bounding
solution. In particular, as G increases, more and more fluctuation subfields must be
included in the solution to ensure that the spectral constraint remains satisfied. We
find that these subfields have a clear self-similar structure consistent with previous
work (see PK03 for a more detailed discussion).

Furthermore, as already noted, since the function θ(z) is restricted to belong to
a restricted family defined by (3.10), the bound considered in § 3 does not allow
for the presence of an upper boundary layer in the Lagrange multiplier, a naturally
developing characteristic of the bound generated by the CDH method. It is reasonable
to suppose that such a discrepancy will lead inevitably to a quantitative difference
between the two bounds. Indeed, the close (yet not perfect) agreement between Gθ

and aφz over much of the flow depth (as shown in figure 4c) suggests yet another
subtle, yet possibly important, reason why the bound generated in § 3 is not as good
as possible. If we identify Gθ with aφz the constraint J � 0 as defined in (3.5)
for the bounding solution constructed in § 3 is actually stronger than the spectral
constraint H � 0 defined in (4.18). Since λ < a, a particular marginal choice of φz, or
equivalently θ with H = 0, will be acceptable within the CDH problem formulation,
yet will not be an acceptable choice as a trial function since J < 0.

5. Conclusions
This paper presents a complete solution to the CDH problem for the rigorous

lower bound on dissipation in surface-stress-driven flow up to the seventh spanwise
wavenumber bifurcation which occurs at G = 7.06 × 105. The asymptotic value of
the lower bound can be predicted to be 〈‖∇u‖2〉 � 7.531G3/2 − 20.3G, i.e. ε �
7.531u3

�/h − 20.3u2
�ν/h2 where u� is the friction velocity defined by τ = ρu2

� and τ is
the (upper) surface stress. We show how the leading-order scaling arises naturally from
a straightforward calculation imposing the natural constraints of total power balance
and horizontally averaged streamwise momentum balance, although the particular
quantitative scaling factor is somewhat underestimated. That underestimation occurs
largely because of strong simplifying assumptions made during the solution of the
required optimization problem, as discussed above in § 4.7.

Our choice of an equivalent body-forced flow problem B (with body forcing
restricted to a sufficiently narrow region in the vicinity of the upper boundary)
to model the surface-stress-driven flow (referred to throughout this paper as flow
A) also allows us to draw comparisons with previous work on body-forced flow.
For example, Doering & Foias (2002) and Doering et al. (2003) found for body-
forced turbulence that variational bounds on the non-dimensional mechanical energy
dissipation rate should take the form c1Re3 + c2Re2, where c1 and c2 depend in some
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way upon the particular structure of the body force, and the Reynolds number has
been appropriately defined in terms of the velocity and length scales of the forcing.
In our flow, from the definition of G in (2.6), G can be identified with a square
of a friction Reynolds number Ref defined in terms of a friction velocity u�, i.e.
G1/2 = Ref ≡ u�h/ν, and so the lower bound scaling γ � 7.531 − 20.3G−1/2 (with γ

defined as in (3.15)) is consistent with the results of Doering and co-workers, with
c1 = 7.531 and c2 = −20.3 in their formulation.

However, as is always the case with analyses of this kind, the lower bound that
we have determined must be treated with caution. Although it seems quite plausible
that at high G the mechanical energy dissipation rate should be independent of the
flow viscosity (and so, dimensionally ε = O(u3

�/h), a scaling consistent with our
calculations) there is no rigorous reason why a stationary flow should be organized
so as to minimize its mechanical energy dissipation rate. Secondly, even if the scaling
is correct, there is no reason to suppose that the quantitative numerical factors
which we have determined yield a ‘tight’ bound, in the sense that there actually
exists a realizable flow that has an associated dissipation which approaches closely
the predicted lower bound. Indeed, since we only impose two integral constraints
consistent with, but substantially weaker than, the incompressible Navier–Stokes
equations, we optimize over a class of vector fields that constitute a superset of
the solutions to the true governing equations. Therefore, it is unclear whether the
constructed bound is attainable by flows that satisfy the Navier–Stokes equations.

Indeed, there are cogent reasons to suppose that real flows are unlikely to replicate
the predicted mean velocity profile of the bounding solution generated by the CDH
method. As noted by PK03 for the plane Couette flow, the boundary layers predicted
by the bounding solution do not exhibit the log-layer character that is typical of
wall-bounded flows. Furthermore, it is not established whether the predicted profile
can be sustained over a sufficiently long time to be consistent with the modelling
assumptions. The natural way to address these issues is through numerical simulation
(as done recently for the related problem of body-forced plane shear flow with stress-
free boundary conditions by Doering et al. 2003). We intend to report in due course
the results of such simulations of both flows A and B to adequately high Gr to
identify the asymptotic scaling behaviour. Using such simulations, we will be able to
calculate directly the actual long-time average of the mechanical energy dissipation
rate, as well as the associated mean flow structures, which we can then compare with
the bounding solutions presented here.
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Appendix. Critical flows and the energy stability condition
To obtain the strongest possible bound in § 3 we adjust the amplitude of the

function θ(z) in (3.5), say β ≡ 〈θ〉, so that θ(z) is critical. This means that there is a
special v = (v1, v2, v3), say v∗, for which

J[v∗; θ] = 0. (A 1)

The functional J[v, θ] ≡ 〈‖∇v‖2〉 + G〈θv1v3〉 is positive for all other v. Well-known

arguments show that θ(z) = βθ̂(z) is critical provided that the following linear problem
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m βG l

0 51.73 2.08
1 66.72 2.22
2 91.28 2.52
3 122.74 3.00
4 157.95 3.56
5 195.09 4.20

10 388.16 8.08

Table 1. Solutions of the eigenproblem (A2) with the exponential profile from (3.10).

has a non-trivial solution:

−2∇2v∗ + βG




v̂∗3

0

v̂∗1


 θ̂(z) = −∇p. (A 2)

This eigenproblem determines the eigenvalue, βG, as a functional of the profile θ̂(z).
To solve (A 2) we assume that v∗ is independent of x and takes the form of spanwise

rolls. Thus the eigensolution has the form

v∗1(y, z) = −2ieilyχ(z) + c.c., (A 3)

Ψ (y, z) = eilyψ(z) + c.c., (A 4)

where the spanwise circulation is

(v∗2, v∗3) = (−Ψz, Ψy). (A 5)

The functions χ and ψ are both real. Substituting into (A 2) leads to a sixth-order
boundary value problem which is solved using the spectral methods of Weideman &
Reddy (2000). Thus, to construct a critical θ(z) we pick a normalized profile θ̂ (z) and
then find the amplitude β by locating the smallest eigenvalue of (A 2). Some results
for the exponential profile in (3.10) are summarized in table 1.
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